

1

Steps and Points for JCM Project development

Masayoshi FUTAMI

March 3, 2022

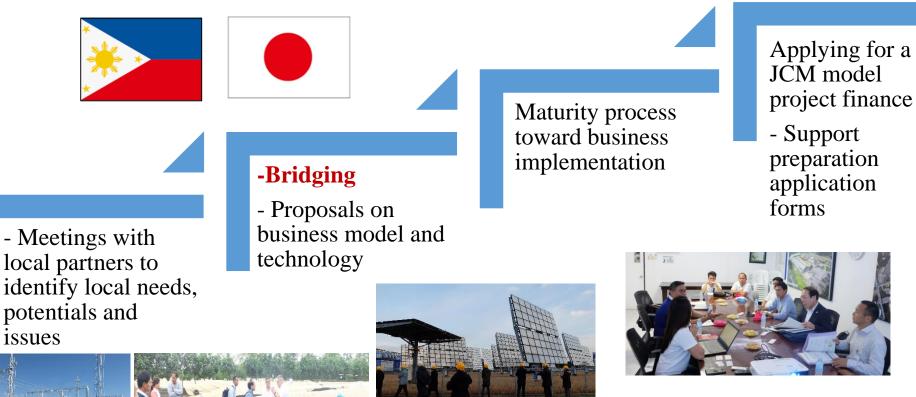
Overseas Environmental Cooperation Center, Japan (OECC)

I. Steps for JCM Project development support by OECC

II. Points for JCM project development

III. Case study

I. Steps for JCM Project development support by OECC

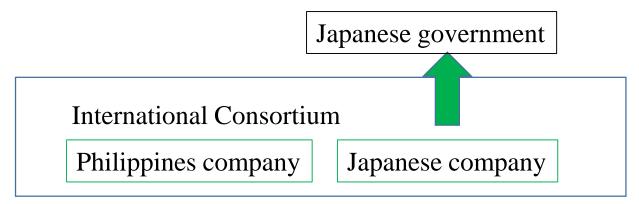


OECC works for project findings and development in Asian 12 countries (Philippines, Mongolia, Bangladesh, Viet Nam, Lao PDR, Indonesia, Cambodia, Myanmar, Thailand, Sri Lanka, India and Malaysia).

Steps for JCM Project development support by OECC Ι.

I. Steps for JCM Project development support by OECC

Bridging between local potential partner and Japanese companies



Potential Philippines partner \longleftrightarrow Japanese companies

II. Points for JCM Project development

1. Since Japanese companies apply for JCM, it is important to build partnerships with Japanese companies.

- 2. Reliable financial arrangement is expected
- In the subsidy examination for the JCM model project, the status of financing other than the subsidy is confirmed in considerable detail to check the fusibility of the project.
- Whether it's equity to a SPC or borrowing, it is necessary to make it clear that those are ready.

II. Points for JCM Project development

3. Projects that contribute to decarbonization

Solar power generation	Storage battery & Electric grid system			
Wind power generation	wer generation > Energy-saving infrastructure			
Geothermal power generation	Hydrogen technology			
Hydro power generation	Carbon Capture and Storage			
➤ Waste to energy	Ammonia fuel			

H_2

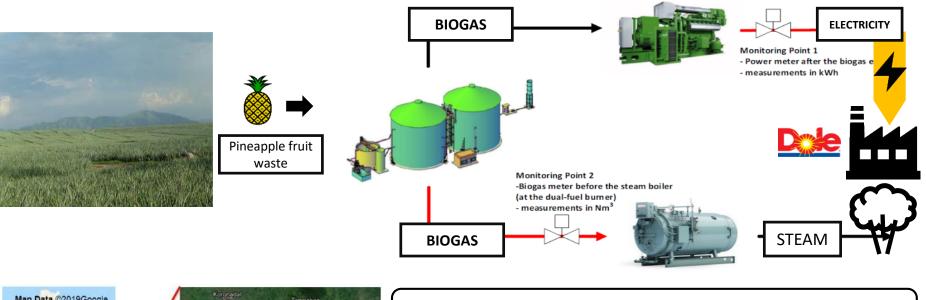
ProductionStorageUtilizationHydrogen EMSHydrogen Energy Management SystemPower-to-gasH2 Energy
StorageFuel CellFIREImage: Comparison of the system

NIES super computer

Fukushima H2 energy research field

Digital power mitigation

3. Case study

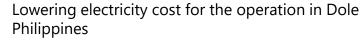


JCM model projects consulted by OECC

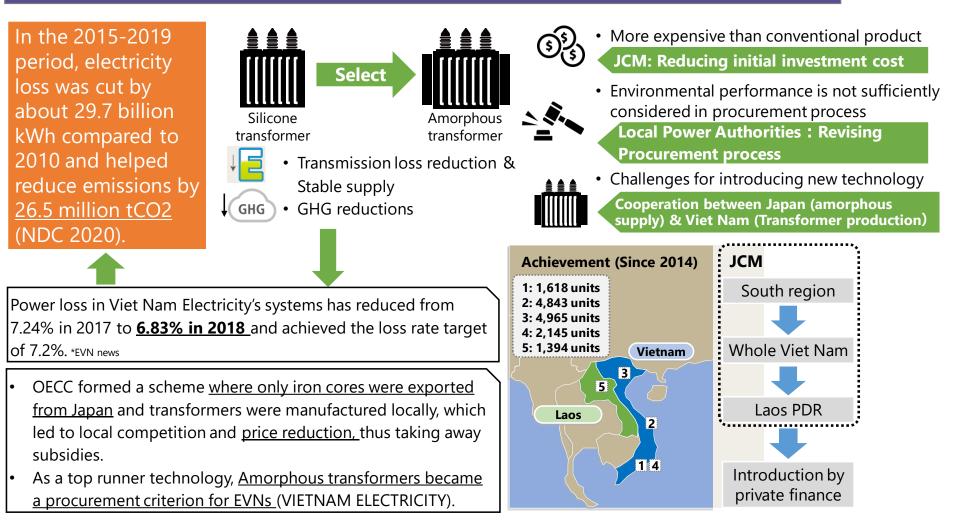
OECC has been successfully supported the project development for 24 projects

Year	Partner country	Technology introduced and project boundary	GHG reduction (tCO2/year)
2021	Indonesia	Introduction of 3.3MW Rooftop Solar Power System in Woodworking Factories	2,396
2020	Myanmar	7.3MW Solar PV in Mandalay International Airport and Yangon City	3,276
2020	The Philippines	2MW Solar PV at Shopping Mall (JCM Eco Lease Scheme)	1,476
2020	Vietnam	2MW Solar PV for Pellet Factory	1,024
2019	The Philippines	Biogas Power Generation and Fuel Conversion Project in Pineapple Canneries	52,156
2019	Mongolia	Fuel Conversion by Introduction of LPG Boilers to Beverage Factory	5,781
2018	Mongolia	21MW Solar PV in Bayanchandmani	27,008
2017	Mongolia	20MW Solar PV in Darkhan City	22,927
2017	Mongolia	15MW Solar PV in New Airport Suburb	18,438
2017	<u>Indonesia</u>	Absorption Chiller at Chemical Factory	1,084
2017	<u>The Philippines</u>	1.2MW Solar PV at Refrigerating Warehouse	838
2017	<u>The Philippines</u>	1.53MW Solar PV at Auto Parts Factories	1,124
2017	Laos	Amorphous Transformers in Nationwide Power Grids	2,099
2017	Viet Nam	Amorphous Transformers in Southern and Central Power Grids II (phase 4)	1,469
2016	<u>Thailand</u>	1.5MW Solar PV and EMS at Paint Factory	1,344
2016	<u>Cambodia</u>	800kW Solar PV project at International School	772
2016	<u>Mongolia</u>	8.3MW Solar PV at Farm in Ulaanbaatar Suburb	10,580
2016	<u>Viet Nam</u>	Amorphous Transformers in Northern, Central and Southern Power Grids (phase 3)	2,098
2015	<u>Mongolia</u>	10MW Solar PV in Darkhan City	14,746
2015	<u>Mongolia</u>	2.1MW Solar PV at Farm in Ulaanbaatar Suburb	2,707
2015	<u>Bangladesh</u>	High Efficiency Loom at Weaving Factory	1,518
2015	<u>Bangladesh</u>	340kW PV-diesel Hybrid System at Fastening Manufacturing Plant	265
2015	<u>Viet Nam</u>	Amorphous Transformers in Southern and Central Power Grids (phase 2)	3,564
2014	<u>Viet Nam</u>	Amorphous Transformers in Southern Power Grids (phase 1)	610

Case I: Biogas power generation and fuel substitution project by fruit residue in pineapple canneries

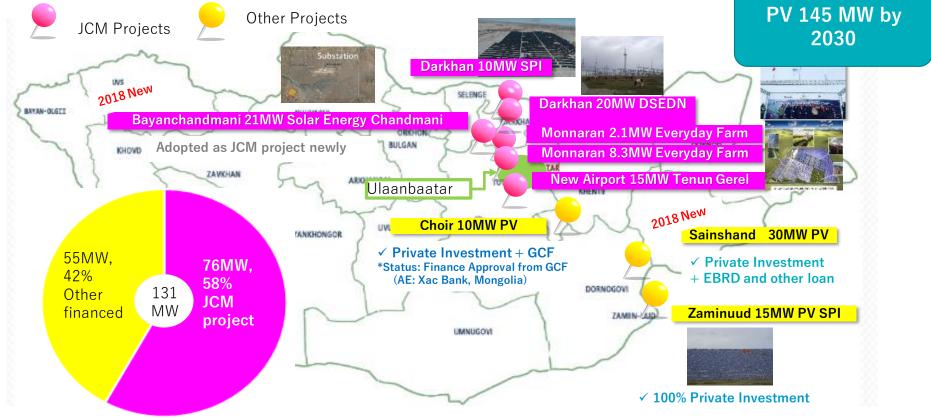


GHG reduction: 52,156 tCO2/year


- By Power Generation: <u>11,881 t-CO2 reduction / year</u>

- By Boilers: 40,275 t-CO2 reduction/ year

*INDC aims to reduce 70% GHG emissions by 2030 through improved power supply and proper disposal of waste.


Case2: Contribution to domestic procurement standard and autonomous investment

OECC

Case3: Contribution to Nationally Determined Contributions of Mongolia

*JCM related Contribution for NDC in Mongolia: 76 MW

*Private Investment PV Project by the trigger of successful JCM projects: 55MW

Thank you for your attention!